PROBABILISTIC DURABILITY ANALYSIS OF CEMENTITIOUS MATERIALS UNDER EXTERNAL SULFATE ATTACK

S. Sarkar¹, S. Mahadevan¹, J.C.L. Meeussen², H. van der Sloot², D. S. Kosson¹

> ¹Vanderbilt University ²Energy Research Centre of The Netherlands

Consortium for Risk Evaluation with Stakeholder Participation

CRESP III

DOE-EM Performance Assessment Community of Practice Technical Exchange July 13-14, 2009

Presentation Outline

- Motivation
- Numerical Model Framework
- Model Calibration and Validation
- Example of Deterministic Durability Analysis
- Examples of Sensitivity Analysis
- Sources of Uncertainty
- Uncertainty Quantification
- Example of Probabilistic Durability Analysis
- Conclusion

Motivation

Current DOE approach

- No tool available for assessment of progressive damage of the containment structures for low level nuclear wastes
- Undamaged to complete damaged state at selected/assumed times

Need for a mechanistic model

- Able to predict rate of degradation of a particular structure under specific boundary conditions
- Needs to be calibrated and validated

Important degradation phenomena

- Chloride attack : reinforcement corrosion, cracking
- Sulfate attack : expansive product formation, cracking
- Carbonation : reinforcement corrosion
- Leaching: loss of strength

Examples of Concrete Degradation

Chloride-Induced Corrosion

Courtesy of F. Sanchez

Plant

Intrusion

Sulfate Attack on Cementitious Materials

Effects of Sulfate Attack

- Expansion
 - Gypsum formation
 - Ettringite Formation

Cracking

- Loss of Strength
 - Cracking
 - CSH deterioration

Spalling

Objectives

- Develop a numerical model to assess response of the structure (durability and contaminant release) under sulfate attack
- Develop probabilistic framework to incorporate various sources of uncertainty in durability analysis

Diffusion and Chemical Reactions

Governing Equation for Diffusion

(saturated porous material under isothermal condition)

Chemical Reactions

- Available quantities of ions: pHStat test results (LeachXS database)
- Potential solid phases: Identified by comparing results of pHdependent leaching tests and simulations with different solid phase mineral sets using ORCHESTRA (by ECN)
- Calculation of liquid-solid equilibrium and solid phase distribution using ORCHESTRA

Strain Development and Change in Porosity and Tortuosity

• Volume Change

$$\overline{\Delta V_s} = (V_{\text{products}} - V_{\text{reactants}}) - b \varphi$$

Fraction of porosity available (Tixier and Mobasher, 2003)

Strain

(homogeneous and isotropic material)

$$\varepsilon = \frac{\Delta \overline{V_s}}{3}$$

Porosity Change

 $\varphi_{\rm new} = \varphi_{\rm original} - (V_{\rm products} - V_{\rm reactants})$

• Tortuosity change (Samson et al., 2007)

$$\tau_{\text{new}} = \tau_{\text{original}} \exp((\varphi_{\text{original}} - \varphi_{\text{new}}) * 4.3 / \text{paste volume})$$

11

Damage Accumulation

Nonlinear Ascending Region

(Karihaloo, 1995, Budiansky and O'Connell, 1976)

Empirical relation between crack density and strain

k, m calibrated from

stress-strain diagram

$$C_d = k \left(1 - \frac{\varepsilon^{th}}{\varepsilon} \right)^m$$

Damage parameter

$$\omega \approx \frac{16}{9}C_d$$

Nonlinear Descending Region

(Nemat-Nasser and Hori, 1993)

Fracture Mechanics

12

$$\frac{\sigma}{f_t'} = \sqrt{\frac{\tan(\pi\omega_0/2)}{\tan(\pi\omega/2)}} \text{ and } \frac{w}{w_0} = \frac{\sigma}{f_t'} \left(\frac{\log(\sec(\pi\omega/2))}{\log(\sec(\pi\omega_0/2))}\right) - 1$$

Change in Material Properties

 Mean Field Regime (dilute concentration of cracks) Assumption: randomly oriented penny-shaped cracks scattered in a homogeneous matrix (Salganik, 1974)

$$D = \frac{D_0}{\tau} (1 + \frac{32}{9}C_d)$$

Assumption: Linear relations (Krajcinovic et al., 1992)

$$E = E_0 (1 - \frac{16}{9}C_d)$$
 and $v = v_0 (1 - \frac{16}{9}C_d)$

• Percolation Regime (spanning cluster of cracks and macro-cracks) (Stauffer, 1985 and Krajcinovic *et al.*, 1992)

$$D = \frac{D_0}{\tau} (1 + \frac{32}{9}C_d) + \frac{D_0}{\tau} \frac{(C_d - C_{dc})^2}{(C_{dec} - C_d)}$$

- Relation between elastic moduli and damage still needs investigation
- Mean-field regime relations assumed by Krajcinovic et al., 1992

Model Calibration and Validation

- 7 cm x 20 mm CSA type 10 cement paste sample
- 50 mmol/L of Na₂SO₄ solution in 30 L tank

External solution pH : 10.3

- 7 day renewal of solution
- Only one face exposed
- Porosity : 0.52
- Calibration parameter: tortuosity (= 18) and b (= 0.3)

Model calibrated with experimental results after 3 months and validated against experimental results after 1 year (Samson et al., 2007)

Model Specifications

- US Type I cement with w:c:s mass ratio 0.5:1:3
- 0.35 M sodium sulfate solution (constant boundary condition)
- Length of the structure 20 cm (divided into 200 nodes with varying mesh size)
- Porosity 0.15, Tortuosity 50, fraction of available porosity 0.5
- 15 Simulation performed for 8 years

- Calcium leaching prominent near the boundary
- Gypsum formation front prominent as a large sulfur peak
- Damage rate progression nonlinear process
- Approximate rate of progression: 0.0013 m/year
- 16

Examples of Sensitivity Analysis

- Factors considered
 - External solution pH
 - Structure initial porosity & tortuosity, cement type
- Simulation details
 - 25 mm x 25 mm x 285 mm US type I sample, all faces exposed
 - 350 mmol/L Na₂SO₄ external solution
 - External solution pH : 7
 - 7 day renewal of solution
 - Liquid to solid volume ratio : 10
 - Porosity : 0.3
 - Fraction of available porosity : 0.5
 - Tortuosity : 36
 - Cement : water : sand (mass ratio) = 1 : 0.5 : 3

Tortuosity affects the rate at which mineralogical features will change as it affects the diffusion of the ions. If the path is more tortuous, ions will take more time to move from one point in the structure to another.

> Damage increases with increase in Calcium Aluminate content

Uncertainty Quantification <u>Method 1</u>

Model Error Quantification

Sources

- Input data measurement (D1), e.g., initial porosity
- Output data measurement (D2), e.g., experimental verification data
- Discretization time and space (T and S) : Richardson extrapolation
- Uncertainty quantification method (U) : Sampling method and truncation of response surface
- Model form (M) : Need to quantify using experimental observations

Model form error

$$\mathcal{E}_{obs} = y_{pred} - y_{obs}$$
$$= f(\mathcal{E}_{D_1}, \mathcal{E}_T, \mathcal{E}_S, \mathcal{E}_U) + \mathcal{E}_M - \mathcal{E}_{D_2}$$
$$\Rightarrow \mathcal{E}_M = \mathcal{E}_{obs} + \mathcal{E}_{D_2} - f(\mathcal{E}_{D_1}, \mathcal{E}_T, \mathcal{E}_S, \mathcal{E}_U)$$

Example of Durability Analysis

Problem Description

- US type I cement mortar sample (25mm x 25mm x 285mm) with cement, water and sand mass ratio 1:0.5:3
- Na₂SO₄ solution to sample volume ratio 10
- Simulation performed for 2 years
- Uncertainty quantification
 - Physical variability
 - Initial porosity, tortuosity, pH and concentration of external solution and renewal rate of the solution
 - Data uncertainty
 - Fraction of porosity available for solid product deposition, peak stress and Young's modulus

Example of Durability Analysis

Statistical description of the parameters

Input Type	Distribution
Initial porosity	N(0.3, 0.03)
Initial tortuosity	N(36, 3.6)
pH of external solution	N(7, 1.4)
Solution concentration (moles/L)	N(0.35, 0.07)
Renewal rate of solution (days)	U(5, 15)
Fraction of porosity available	U(LB, UB) LB~U(0.05, 0.15) UB~U(0.25, 0.35)
Peak stress (MPa)	N(f _t , 0.5) f _t ~N(3, 0.3)
Initial Young's Modulus (GPa)	N(E ₀ , 5) E ₀ ~N(20, 2)

Conclusions

- A coupled reactive transport and damage mechanics model has been developed for assessment of degradation of cementitious materials under external sulfate attack
- Sensitivity analysis was carried out to identify influential parameters
 - Long term effect of pH of external solution
 - Damage more if porosity less
 - Effect of tortuosity on rate of damage
 - Damage increases if calcium aluminate content increases
- Durability analysis approach demonstrated considering various sources of uncertainty

